993 resultados para beta Catenin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innate immunity recognizes and resists various pathogens; however, the mechanisms regulating pathogen versus non-pathogen discrimination are still imprecisely understood. Here, we demonstrate that pathogen-specific activation of TLR2 upon infection with Mycobacterium bovis BCG, in comparison with other pathogenic microbes, including Salmonella typhimurium and Staphylococcus aureus, programs macrophages for robust up-regulation of signaling cohorts of Wnt-beta-catenin signaling. Signaling perturbations or genetic approaches suggest that infection-mediated stimulation of Wnt-beta-catenin is vital for activation of Notch1 signaling. Interestingly, inducible NOS (iNOS) activity is pivotal for TLR2-mediated activation of Wnt-beta-catenin signaling as iNOS(-/-) mice demonstrated compromised ability to trigger activation of Wnt-beta-catenin signaling as well as Notch1-mediated cellular responses. Intriguingly, TLR2-driven integration of iNOS/NO, Wnt-beta-catenin, and Notch1 signaling contributes to its capacity to regulate the battery of genes associated with T(Reg) cell lineage commitment. These findings reveal a role for differential stimulation of TLR2 in deciding the strength of Wnt-beta-catenin signaling, which together with signals from Notch1 contributes toward the modulation of a defined set of effector functions in macrophages and thus establishes a conceptual framework for the development of novel therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employed different experimental model systems to define the role of GATA4, beta-catenin, and steroidogenic factor (SF-1) transcriptional factors in the regulation of monkey luteal inhibin secretion. Reverse transcription polymerase chain reactions and western blotting analyses show high expression of inhibin-alpha, GATA4, and beta-catenin in corpus luteum (CL) of the mid-luteal phase. Gonadotropin-releasing hormone receptor antagonist-induced luteolysis model suggested the significance of luteinizing hormone (LH) in regulating these transcriptional factors. Inducible cyclic AMP early repressor mRNA expression was detected in the CL and no change was observed in different stages of CL. Following amino acid sequence analysis, interaction between SF-1 and beta-catenin in mid-stage CL was verified by reciprocal co-immunoprecipitation experiments coupled to immunoblot analysis. Electrophoretic mobility shift analysis support the role of SF-1 in regulating luteal inhibin-alpha expression. Our results suggest a possible multiple crosstalk of Wnt, cAMP, and SF-1 in the regulation of luteal inhibin secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Insulin like growth factor binding proteins modulate the mitogenic and pro survival effects of IGF. Elevated expression of IGFBP2 is associated with progression of tumors that include prostate, ovarian, glioma among others. Though implicated in the progression of breast cancer, the molecular mechanisms involved in IGFBP2 actions are not well defined. This study investigates the molecular targets and biological pathways targeted by IGFBP2 in breast cancer. Methods: Transcriptome analysis of breast tumor cells (BT474) with stable knockdown of IGFBP2 and breast tumors having differential expression of IGFBP2 by immunohistochemistry was performed using microarray. Differential gene expression was established using R-Bioconductor package. For validation, gene expression was determined by qPCR. Inhibitors of IGF1R and integrin pathway were utilized to study the mechanism of regulation of beta-catenin. Immunohistochemical and immunocytochemical staining was performed on breast tumors and experimental cells, respectively for beta-catenin and IGFBP2 expression. Results: Knockdown of IGFBP2 resulted in differential expression of 2067 up regulated and 2002 down regulated genes in breast cancer cells. Down regulated genes principally belong to cell cycle, DNA replication, repair, p53 signaling, oxidative phosphorylation, Wnt signaling. Whole genome expression analysis of breast tumors with or without IGFBP2 expression indicated changes in genes belonging to Focal adhesion, Map kinase and Wnt signaling pathways. Interestingly, IGFBP2 knockdown clones showed reduced expression of beta-catenin compared to control cells which was restored upon IGFBP2 re-expression. The regulation of beta-catenin by IGFBP2 was found to be IGF1R and integrin pathway dependent. Furthermore, IGFBP2 and beta-catenin are co-ordinately overexpressed in breast tumors and correlate with lymph node metastasis. Conclusion: This study highlights regulation of beta-catenin by IGFBP2 in breast cancer cells and most importantly, combined expression of IGFBP2 and beta-catenin is associated with lymph node metastasis of breast tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lancelet (amphioxus) embryo develops from a miolecithal egg and starts gastrulation when it is approximately 400 cells in size, in a fashion similar to that of some non-chordate deuterostomes. Throughout this type of gastrulation, the embryo develops characteristics such as the notochord and hollow nerve cord that commonly appear in chordates. beta-Catenin is an important factor in initiating body patterning. The behavior and developmental pattern of this protein in early lancelet development was examined in this study. Cytoplasmic beta-catenin was localized to the animal pole after fertilization and then was incorporated asymmetrically into the blastomeres during the first cleavage. Asymmetric distribution was observed at least until the 32-cell stage. The first nuclear localization was at the 64-cell stage, and involved all of the cells. At the initial gastrula stage, however, concentrated beta-catenin was found on the dorsal side. LiCl treatment affected the asymmetric pattern of beta-catenin during the first cleavage. LiCl also changed distribution of nuclear beta-catenin at the initial gastrula stage: distribution extended to cells on the animal side. Apparently associated with this change, expression domains of goosecoid, lhx3 and otx also changed to a radially symmetric pattern centered at the animal pole. However, LiCl-treated embryos were able to establish embryonic polarity. The present study suggests that in the lancelet embryo, polarity determination is independent of dorsal morphogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously we have employed antibodies to the tight junction (TJ)-associated proteins ZO-1 and occludin to describe endothelial tight junction abnormalities, in lesional and normal appearing white matter, in primary and secondary progressive multiple sclerosis (MS). This work is extended here by use of antibodies to the independent TJ-specific proteins and junctional adhesion molecule A & B (JAM-A, JAM-B). We have also assessed the expression in MS of ß-catenin, a protein specific to the TJ-associated adherens junction. Immunocytochemistry and semiquantitative confocal microscopy for JAM-A and ß-catenin was performed on snap-frozen sections from MS cases (n = 11) and controls (n = 6). Data on 1,443 blood vessels was acquired from active lesions (n = 13), inactive lesions (n = 13), NAWM (n = 20) and control white matter (n = 13). In MS abnormal JAM-A expression was found in active (46%) and inactive lesions (21%), comparable to previous data using ZO-1. However, a lower level of TJ abnormality was found in MS NAWM using JAM-A (3%) compared to ZO-1 (13%). JAM-B was strongly expressed on a small number of large blood vessels in control and MS tissues but at too low a level for quantitative analysis. By comparison with the high levels of abnormality observed with the TJ proteins, the adherens junction protein ß-catenin was normally expressed in all MS and control tissue categories. These results confirm, by use of the independent marker JAM-A, that TJ abnormalities are most frequent in active white matter lesions. Altered expression of JAM-A, in addition to affecting junctional tightness may also both reflect and affect leukocyte trafficking, with implications for immune status within the diseased CNS. Conversely, the adherens junction component of the TJ, as indicated by ß-catenin expression is normally expressed in all MS and control tissue categories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of three potent new antitumor agents is described: the A83586C-citropeptin hybrid (1), the A83586C-GE3 hybrid (2), and l-Pro-A83586C (3). Significantly, compounds 1 and 2 function as highly potent inhibitors of ß-catenin/TCF4 signaling within cancer cells, while simultaneously downregulating osteopontin (Opn) expression. A83586C antitumor cyclodepsipeptides also inhibit E2F-mediated transcription by downregulating E2F1 expression and inducing dephosphorylation of the oncogenic hyperphosphorylated retinoblastoma protein (pRb).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we describe our asymmetric total syntheses of (+)-A83586C, (+)-kettapeptin and (+)-azinothricin. We also demonstrate that molecules of this class powerfully inhibit beta-catenin/TCF4- and E2F-mediated gene transcription within malignant human colon cancer cells at low drug concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In intestinal epithelial cells, inactivation of APC, a key regulator of the Wnt pathway, activates beta-catenin to initiate tumorigenesis. However, other alterations may be involved in intestinal tumorigenesis. Here we found that RUNX3, a gastric tumor suppressor, forms a ternary complex with beta-catenin/7CF4 and attenuates Wnt signaling activity. A significant fraction of human sporadic colorectal adenomas and Runx3(+/-) mouse intestinal adenomas showed inactivation of RUNX3 without apparent beta-catenin accumulation, indicating that RUNX3 inactivation independently induces intestinal adenomas. In human colon cancers, RUNX3 is frequently inactivated with concomitant beta-catenin accumulation, suggesting that adenomas induced by inactivation of RUNX3 may progress to malignancy. Taken together, these data demonstrate that RUNX3 functions as a tumor suppressor by attenuating Wnt signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Histone deacetylase (HDAC)7 is expressed in the early stages of embryonic development and may play a role in endothelial function.

Objective: This study aimed to investigate the role of HDAC7 in endothelial cell (EC) proliferation and growth and the underlying mechanism.

Methods and Results: Overexpression of HDAC7 by adenoviral gene transfer suppressed human umbilical vein endothelial cell (HUVEC) proliferation by preventing nuclear translocation of ß-catenin and downregulation of T-cell factor-1/Id2 (inhibitor of DNA binding 2) and cyclin D1, leading to G1 phase elongation. Further assays with the TOPFLASH reporter and quantitative RT-PCR for other ß-catenin target genes such as Axin2 confirmed that overexpression of HDAC7 decreased ß-catenin activity. Knockdown of HDAC7 by lentiviral short hairpin RNA transfer induced ß-catenin nuclear translocation but downregulated cyclin D1, cyclin E1 and E2F2, causing HUVEC hypertrophy. Immunoprecipitation assay and mass spectrometry analysis revealed that HDAC7 directly binds to ß-catenin and forms a complex with 14-3-3 e, ?, and ? proteins. Vascular endothelial growth factor treatment induced HDAC7 degradation via PLC?-IP3K (phospholipase C?–inositol-1,4,5-trisphosphate kinase) signal pathway and partially rescued HDAC7-mediated suppression of proliferation. Moreover, vascular endothelial growth factor stimulation suppressed the binding of HDAC7 with ß-catenin, disrupting the complex and releasing ß-catenin to translocate into the nucleus.

Conclusions: These findings demonstrate that HDAC7 interacts with ß-catenin keeping ECs in a low proliferation stage and provides a novel insight into the mechanism of HDAC7-mediated signal pathways leading to endothelial growth

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Wnt signaling is thought to be important in prostate cancer, in part because proteins such as beta-catenin can also affect androgen receptor signaling. beta-Catenin forms a cell adhesion complex with E-cadherin raising the possibility that loss of expression or a change in beta-catenin distribution in the cell could also alter downstream signaling, decreased inter-cellular adhesion and the promotion of metastasis. A number of studies have reported the altered expression and/or localization of beta-catenin as a biomarker in prostate cancer.

METHODS: Tissue microarrays comprised of BPH and low, moderate and high-grade prostate cancer (n=77) were assessed for beta-catenin expression and distribution using immunohistochemistry. Staining was also performed on a tissue microarray containing tissue from patients before and after hormone manipulation. The effects of fixation and different antibodies was assessed on fixed LNCaP cell pellets and small prostate tissue microarrays.

RESULTS: We have observed increased beta-catenin expression in only high Gleason score (>7) prostate cancer. A nuclear re-distribution of beta-catenin has previously been reported. We noted nuclear beta-catenin in benign prostatic hyperplasia and a gradual loss in nuclear distribution with increasing Gleason grade. We found no evidence for an alteration in beta-catenin expression or re-distribution with hormone ablation. Altered fixation, antibodies and antibody concentration did affect the intensity and specificity of staining.

CONCLUSIONS: A loss of nuclear beta-catenin is the most consistent feature in prostate cancer rather than absolute levels of expression. We also suggest that variation in immunohistochemical protocols may explain variations in the reported literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desmoid-type fibromatoses are locally aggressive and frequently recurrent tumours, and an accurate diagnosis is essential for patient management. The majority of sporadic lesions harbour beta-catenin (CTNNB1) mutations. We used next-generation sequencing to detect CTNNB1 mutations and to compare the sensitivity and specificity of next-generation sequencing with currently employed mutation detection techniques: mutation-specific restriction enzyme digestion and polymerase chain reaction amplification. DNA was extracted from formalin-fixed paraffin-embedded needle biopsy or resection tissue sections from 144 patients with sporadic desmoid-type fibromatoses, four patients with syndrome-related desmoid-type fibromatoses and 11 morphological mimics. Two primer pairs were designed for CTNNB1 mutation hotspots. Using ≥10 ng of DNA, libraries were generated by Fluidigm and sequenced on the Ion Torrent Personal Genome Machine. Next-generation sequencing had a sensitivity of 92.36 % (133/144, 95 % CIs: 86.74 to 96.12 %) and a specificity of 100 % for the detection of CTNNB1 mutations in desmoid-type fibromatoses-like spindle cell lesions. All mutations detected by mutation-specific restriction enzyme digestion were identified by next-generation sequencing. Next-generation sequencing identified additional mutations in 11 tumours that were not detected by mutation-specific restriction enzyme digestion, two of which have not been previously described. Next-generation sequencing is highly sensitive for the detection of CTNNB1 mutations. This multiplex assay has the advantage of detecting additional mutations compared to those detected by mutation-specific restriction enzyme digestion (sensitivity 82.41 %). The technology requires minimal DNA and is time- and cost-efficient.